Chapter 14 Web Scraping

Now we can download data and text from web using url load library

library(tidyverse)
library(rvest)
library(DT)

14.1 issue of COVID19 in Korea

Now I want to download Table from https://en.wikipedia.org/wiki/COVID-19_pandemic_by_country_and_territory Please visit the website, url.

wiki covid

url <-"https://en.wikipedia.org/wiki/COVID-19_pandemic_by_country_and_territory"

read_html() allows us to read url and its’ contents.

h <-read_html(url)
class(h)
h
#html_text(h) # just overview of HTML structure

Go to website via chrom and click F12 button. You can see the right window as below. Now I want find table of Covid-19 table. I open the search tab by using ctrl + F. And writing or typing india to find that table.

Find source and nodes

Now I try to find table nodes from url

tab <- h %>% html_nodes("table")
tab2 <- tab [[2]] %>% html_table
## # A tibble: 234 × 6
##    `Location[a]...1` `Location[a]...2` `Cases[b]` `Deaths[c]` `Recov.[d]` Ref.  
##    <chr>             <chr>             <chr>      <chr>       <chr>       <chr> 
##  1 <NA>              World[e]          43,895,968 1,165,455   29,727,057  [4]   
##  2 <NA>              United States[f]  8,879,060  230,176     5,469,963   [13]  
##  3 <NA>              India             7,946,429  119,502     7,201,070   [14]  
##  4 <NA>              Brazil            5,440,903  157,981     4,904,046   [15][…
##  5 <NA>              Russia[g]         1,547,774  26,589      1,158,940   [17]  
##  6 <NA>              France[h]         1,198,695  35,541      112,716     [18][…
##  7 <NA>              Spain[i]          1,116,738  35,298      No data     [20]  
##  8 <NA>              Argentina[j]      1,116,596  29,730      921,331     [22]  
##  9 <NA>              Colombia          1,033,218  30,565      932,882     [23]  
## 10 <NA>              United Kingdom[k] 917,575    45,365      No data     [25]  
## # … with 224 more rows

I remove ‘,’ and macke numeric variables in Cases, Death and Recover.

tab3 <- tab2[ -c(1, 232, 233, 234), -c(1, 6)] %>%
  setNames(c("Location", "Cases", 
             "Death", "Recover")) 
tab3 <- tab3 %>%
  mutate_at(c('Cases', 'Death', 'Recover'), function(x)(str_replace_all(x, ",", "") %>% as.numeric())) %>%
  mutate(Location = str_replace_all(Location, '\\[[:alpha:]]', ""))

I used \\[[:alpha:]], \\[ means “[” and [:aplpah:] means any alphabet, and last ] means ”]”. So, I try to remove the all character within “[ ]”. Now, Table is.

tab3 %>% datatable()
figs<-tab3 %>%
  mutate(mortality = Death /Cases *1000) %>% # mortality per 1 thousnd cases
  ggplot(aes(x = Cases, y = mortality, size = Death))+
  geom_point() +
  scale_x_continuous(trans = 'log') 
figs

14.2 homework

14.2.1 download Cumulative covid19 death

Download data table from url. You can use tab[[ i ]] code to find cumulative covid19 death. The taret Table in web looks like that.

hint

tab4<-tab[[?]] %>% html_table(fill = TRUE) 

Cumulative Covid19 deaths on Jan 11…. and the table file is

14.2.2 UK, Italy, France, Spain, USA, Canada

select countris of “UK, Italy, France, Spain, USA, Canada” and plot the trends. and upload the final plot in dspubs.org tutor

Hint
step1: create Month_mortatlity data filter countries names of above
step2: chage character data to numeric data
step3: pivot data to long form
step4: plot the graph!

Step 1 and 2

Month_mortality %>% datatable()

step 3

long_death %>% datatable()

step 4

## [1] "LC_CTYPE=en_US.UTF-8;LC_NUMERIC=C;LC_TIME=en_US.UTF-8;LC_COLLATE=en_US.UTF-8;LC_MONETARY=en_US.UTF-8;LC_MESSAGES=en_US.UTF-8;LC_PAPER=en_US.UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US.UTF-8;LC_IDENTIFICATION=C"

14.3 Review of title from google scholar

14.3.1 googl scholar

Search the My name of “Jin-Ha Yoon” in google scholar. The url is https://scholar.google.com/citations?hl=en&user=FzE_ZWAAAAAJ&view_op=list_works&sortby=pubdate

url <- "https://scholar.google.com/citations?hl=en&user=FzE_ZWAAAAAJ&view_op=list_works&sortby=pubdate"

step1 read the html using url address

library(rvest)
gs <- read_html(url)

step2 filter title using nodes and text, and make data.frame

dat<-gs %>% html_nodes("tbody") %>%
  html_nodes("td") %>%
  html_nodes("a") %>%
  html_text() %>%
  data.frame()
library(tm)
library(SnowballC)
library(wordcloud)
library(RColorBrewer)
library(dplyr) # for data wrangling
library(tidytext) # for NLP
library(stringr) # to deal with strings
library(knitr) # for tables
library(DT) # for dynamic tables
library(tidyr)

step3 split the words (tokenizing) using packages or user own methods.

dat <- dat %>%
  setNames(c("titles"))
tokens <-dat %>%
  unnest_tokens(word, titles) %>%
  count(word, sort = TRUE)%>%
  ungroup()

tokens2 <- str_split(dat$titles, " ", simplify = TRUE) %>%
  as.data.frame() %>%
  mutate(id = row_number()) %>%
  pivot_longer(!c(id), names_to = 'Vs', values_to = 'word') %>%
  select(-Vs) %>%
  filter(!word=="") %>%
  count(word, sort = TRUE)%>%
  ungroup()

step4 import lookup data for removing words

data("stop_words") # we should add user own words.
stop_words %>% datatable()

step5 remove stop words and numbers

tokens_clean <- tokens %>%
  anti_join(stop_words, by = c("word")) %>%
  filter(!str_detect(word, "^[[:digit:]]")) %>%
  filter(!str_detect(word, "study|korea"))

step6 create word cloud

set.seed(1)
pal <- brewer.pal(12, "Paired")
tokens_clean %>% 
  with(wordcloud(word, n, random.order = FALSE, colors=pal))

14.4 home work 2

Search you own word in google scholar. for example, You can search “Suicide” or “Hypertension” in google scholar. And, upload your word cloud to google classroom.

14.5 Black Report 2

please visit “https://www.sochealth.co.uk/national-health-service/public-health-and-wellbeing/poverty-and-inequality/the-black-report-1980/the-black-report-2-the-evidence-of-inequalities-in-health/”. That is black report 2, and I need some visualization to present health inequality. Let’s start!.

library(tidyverse)
library(rvest)
library(DT)

Get url, save html from url and find tag of “table”. Review the table 5 using html_table(), and datatable().

url <- "https://www.sochealth.co.uk/national-health-service/public-health-and-wellbeing/poverty-and-inequality/the-black-report-1980/the-black-report-2-the-evidence-of-inequalities-in-health/"
h <-read_html(url)
tab <- h %>% html_nodes("table")
tab[[5]] %>% html_table() %>% DT::datatable()

The source and gender share same column, hence, I want divided that into two columns. the col names are changed by setNames. The gender variable was reshaped when that have any word of males or female. code of fill fill the missing row as very next values, in other word, fill code make html table to data frame table.

tab[[5]] %>% html_table() %>%
  setNames(c('source',  paste0('class', 1:6), 'all', 'ratio')) %>%
  mutate(gender = case_when(
    source == 'Males' ~ 'Males', 
    str_detect(source, 'Females') ~ 'Females', 
    TRUE ~ ""
  )) %>%
  select(source, gender, class1:class6, all, ratio) %>%
  mutate(source = case_when(
    str_detect(source, 'Males|Females') ~ "",
    TRUE ~ source
  )) %>%
  mutate(source = ifelse(source =="", NA, source)) %>%
  fill(source, .direction = "down") %>%
  filter(!gender =="") -> tab5
tab5 %>% DT::datatable()

Plot the bar plot

tab5 %>%
  pivot_longer(-c(source, gender), names_to = 'variables', values_to = 'value') %>% 
  filter(!variables %in% c('all', 'ratio') ) %>%
  mutate(variables = factor(variables, 
                        level = c(paste0('class', 1:6)))) %>%
  mutate(value = as.numeric(value)) %>%
  mutate(source = str_replace(source, "per", "\n per")) %>%
  ggplot(aes(x=variables, y=value, color=gender, fill=gender, group=gender)) +
  geom_bar(stat='identity', aes(color = gender, fill=gender)) +
  facet_grid(source~gender, scale = 'free') +
  theme_minimal() +
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
        panel.background = element_blank(), axis.line = element_blank())+
  theme(strip.text.y.right = element_text(angle = 0, hjust = 0), 
        axis.text.x = element_text(angle = 45, vjust = 0.5, hjust = 1)) +
  guides(color = "none", fill = "none") 

tab5.1 <- tab5 %>% filter(str_detect(source, "Stillbirths")) %>% select(-all, -ratio)

plot the table 6 using same methods of table 5

tab[[6]] %>% html_table() %>%
  tibble() %>%
  setNames(c('source', paste0('class', 1:6), 'all', 'ratio')) %>%
  filter(source == 'SMR') %>%
  mutate(gender = c('Males', 'Females')) %>% 
  select(-all, -ratio) %>%
  pivot_longer(-c(source, gender), names_to = 'variables', values_to = 'value') %>%
  mutate(value= as.numeric(value)) %>%
  ggplot(aes(x=variables, y = value)) +
  geom_bar(stat='identity', aes(fill=gender, color=gender)) +
  facet_grid(~gender) +
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
        panel.background = element_blank(), axis.line = element_blank()) +
  guides(fill ="none", color ="none") +
  ggtitle("Child")

tab[[6]] %>% html_table() %>%
  tibble() %>%
  setNames(c('source', paste0('class', 1:6), 'all', 'ratio')) %>%
  filter(source == 'SMR') %>%
  mutate(gender = c('Males', 'Females')) %>%
  mutate(source = "Childhood Mortality (SMR)") %>%
  select(names(tab5.1)) -> tab6
tab6
## # A tibble: 2 × 8
##   source                    gender  class1 class2 class3 class4 class5 class6
##   <chr>                     <chr>   <chr>  <chr>  <chr>  <chr>  <chr>  <chr> 
## 1 Childhood Mortality (SMR) Males   74     79     95     98     112    162   
## 2 Childhood Mortality (SMR) Females 89     84     93     93     120    156

Repeat reshaping for Table 7.

tab[[7]] %>% html_table() %>% tibble() %>%
  setNames(c('source', paste0('class', 1:6),  'ratio')) %>%
  filter(str_detect(source, 'Men|men')) %>%
  mutate(gender = source) %>%
  mutate(source = "Adult (16-64) SMR") %>%
  select(names(tab5.1)) %>%
  slice(-3) -> tab7

The final graph for black report 2 presentation as below.

rbind(tab5.1, tab6, tab7) %>%
  tibble() %>%
  mutate(source = str_replace(source, "per", "(mortality) \n per")) %>%
  mutate(gender = ifelse(str_detect(gender, 'women'), 'Females',
                         ifelse(str_detect(gender, 'Men'), 'Males', gender))) %>%
  pivot_longer(-c(source, gender), names_to = 'class', values_to = 'SMR') %>%
  mutate(SMR = as.numeric(SMR)) %>%
  ggplot(aes(x=class, y=SMR)) +
  geom_bar(stat='identity', aes(fill=gender, color=gender)) +
  facet_grid(source ~gender, scale='free')+
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
        panel.background = element_blank(), axis.line = element_blank()) +
  theme_minimal()+
  theme(strip.text.y.right = element_text(angle = 0, hjust = 0)) +
 
  guides(fill ="none", color ="none")

14.6 home work 2

Black report 중에 관심있는 표를 visualization 해 주세요