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In time-to-event analyses of observational studies of drug effectiveness, incorrect handling of the period between

cohort entry and first treatment exposure during follow-upmay result in immortal time bias. This bias can be eliminated

by acknowledging a change in treatment exposure status with time-dependent analyses, such as fitting a time-

dependent Cox model. The prescription time-distribution matching (PTDM) method has been proposed as a simpler

approach for controlling immortal time bias. Using simulation studies and theoretical quantification of bias, we com-

pared the performance of the PTDM approach with that of the time-dependent Cox model in the presence of immortal

time. Both assessments revealed that the PTDM approach did not adequately address immortal time bias. Based on

our simulation results, another recently proposed observational data analysis technique, the sequential Cox approach,

was found to bemore useful than thePTDMapproach (Cox: bias =−0.002,mean squared error = 0.025; PTDM: bias =

−1.411, mean squared error = 2.011). We applied these approaches to investigate the association of β-interferon
treatment with delaying disability progression in a multiple sclerosis cohort in British Columbia, Canada (Long-Term

Benefits and Adverse Effects of Beta-Interferon for Multiple Sclerosis (BeAMS) Study, 1995–2008).

bias (epidemiology); confounding factors (epidemiology); epidemiologic methods; immortal time bias; longitudinal

studies; models; survival analysis

Abbreviations: BeAMS, Long-Term Benefits and Adverse Effects of Beta-Interferon for Multiple Sclerosis; CI, confidence interval;

HR, hazard ratio; log HR, log hazard ratio; MS, multiple sclerosis; PTDM, prescription time-distribution matching; RR, rate ratio.

In many observational studies of drug effectiveness, there
may be a delay or waiting period before a subject begins to re-
ceive a treatment. Let us usemultiple sclerosis (MS) as an exam-
ple, with the disease-modifying drug β-interferon being the
study drug of interest. If treated subjects entered a cohort at
the time of their first β-interferon administration but untreated
subjects entered the cohort at an earlier time, such as their first
assessment at anMS clinic or study center conducting the obser-
vational study (as in the paper by Trojano et al. (1)), then the
time period between the first clinic visit (baseline) and the first
administration of β-interferon corresponds to “immortal time”
(2, 3). This delay period is labeled “immortal” because, by de-
sign, subjects in the treated group cannot develop an outcome
before receiving the treatment. Therefore, if some subjects de-
velop the outcome before getting the opportunity to initiate treat-
ment, they will be assigned to the untreated group.

If treatment status is misclassified during this delay period
or if this delay period is excluded from the analysis, “immor-
tal time bias” is introduced. Classifying subjects as “treated”
or “untreated” with a time-invariant variable results in a spu-
rious survival advantage (protective association) in favor of
the treated group. This can considerably distort the estimated
hazard ratio if a large number of failures (events or reaching
outcome) occur before the initiation of treatment or if the du-
ration of the immortal time is large (4). Although this bias was
first identified in the 1970s (5), many studies still fail to ac-
count for this source of bias (2, 6, 7). Recently, the issue of
immortal time bias has resurfaced in pharmacoepidemiology
studies in the context of propensity score adjustment (3, 8–
11), where treatment status must be defined at baseline.

The most common approach to accounting for immortal
time bias is the adoption of a proper treatment exposure
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definition via time-dependent analyses (12), such as time-
dependent Cox proportional hazards models (13–16). Pre-
scription time-distribution matching (PTDM) (13) is a simple
approach to adjusting for immortal time bias that has been
frequently cited (17–21) and used (22–28) in recent years.
The performance and statistical efficiency of this approach
have been claimed to be similar to those of the Cox model
with a binary time-dependent exposure (hereafter called the
“time-dependent Cox model”) (13).
Several studies have quantified the amount and direction

of bias due to “misclassifying” or “ignoring” immortal time
by means of simulation (14, 29–31) or theoretically (15, 32–
34); however, to the best of our knowledge, no attempt has
been made to explore the appropriateness of the PTDM ap-
proach in minimizing immortal time bias. Our primary focus
in this study was to assess the performance of the PTDM
for dealing with this bias. We quantified the bias due to
PTDM via simulation studies as well as theoretically (see
Web Appendix 1 and Web Figure 1, available at http://aje.
oxfordjournals.org/) For comparison, we considered a sim-
plified version of the sequential Cox approach (35), which
was originally proposed for dealing with time-dependent
confounding (36). Additionally, misclassified and excluded
immortal time approaches were also compared. We applied
these methods to investigate the association of time-varying
β-interferon treatment with delaying disability progression in
subjects from the database of a British Columbia, Canada,
MS study, the Long-Term Benefits and Adverse Effects of
Beta-Interferon for Multiple Sclerosis (BeAMS) Study
(1995–2008) (37, 38).

METHODS

Notation

Consider a hypothetical longitudinal study consisting of n
subjects (i = 1, 2, . . ., n). Let t0 = 0 be the start of follow-up
(i.e., the time of the baseline visit). Data on baseline covari-
ates L0 (binary) are recorded at this time. Follow-up continues
until the time of failure (reaching outcome) T or censoring T C.
Regular measurements of the binary treatment status Atm
(Atm = 1 for treated and 0 otherwise) are recorded at intervals
m = 0, 1, 2, . . ., K. Let [tm, tm+1) denote the mth interval. Be-
cause this study is focusing on the implications of immortal
time, we assume that the subjects may initiate treatment no
more than once and continue taking the treatment thereafter
until the study ends (i.e., the value for treatment exposure
changes only once, from 0 to 1). Let treatment initiation occur
at time TA.
For group-based comparison, suppose k = 1 indicates the

ever-treated group, whereas k = 0 indicates the never-treated
group. Let nk indicate the size of these groups. Further, let Nk

and Tk (k = 0, 1) indicate the observed number of failures and
follow-up person-time in these groups, respectively. Let r =
T0:T1, the ratio of the observed person-times in the never-
treated and ever-treated subjects. Denote TIT as the observed
immortal time—that is, the aggregated follow-up time not
under treatment in the ever-treated group—and set f = TIT/T1.
We describe the analytical approaches in detail in the follow-
ing sections.

Cox models with a time-invariant treatment variable

Two imprecise treatment exposure definitions are often used
to estimate the log hazard ratio (log HR), where a Cox model
with time-invariant treatment variable A (which does not de-
pend on the time interval) is fitted while adjusting for the poten-
tial confounders measured at the original baseline as follows:

λTðtmjL0Þ ¼ λ0ðtmÞexpðψ1Aþ ψ2L0Þ;

wherem is the visit index, λ0(tm) is the unspecified baseline haz-
ard function, ψ1 is the log HRof the treatment status (A), andψ2

is the vector of log HRs for the baseline covariates L0.
Included immortal time. In this approach, subjects who

were ever exposed to treatment (“ever-treated”) are classified
as treated for their whole duration of follow-up. Under the as-
sumption of constant hazard, comparing the failure rate ratio
from this approach (RR′) with the correct rate ratio (RR) ob-
tained from a time-dependent analysis (see Suissa (15) and
Web Appendix 2) yields

RR0

RR
¼

N1=T1
N0=T0

N1=ðT1 � TITÞ
N0=ðT0 þ TITÞ

¼ ð1� f Þ × r

ðr þ f Þ :

From this equation, we can see that this approach always under-
estimates the correct failure rate ratio (also see Web Figure 2).

Excluded immortal time. In this approach, the immortal
time—that is, time from cohort entry to the initiation of
treatment—is excluded from the ever-treated subjects’ follow-
up, and time zero for these subjects is taken to be the time of
treatment initiation, TA. However, the follow-up period for the
subjects who were never exposed to treatment (“never-treated”)
remains the same; that is, time zero is the time of cohort entry
t0 = 0. Comparing the failure rate ratio from this approach (RR″)
with the correct rate ratio obtained from a time-dependent anal-
ysis (see Suissa (15) and Web Appendix 2) yields

RR00

RR
¼

N1=ðT1 � TITÞ
N0=T0

N1=ðT1 � TITÞ
N0=ðT0 þ TITÞ

¼ r

ðr þ f Þ :

From this equation, we can see that if the person-times in the
ever-treated cohort are much smaller than the person-times in
the never-treated cohort (i.e., if r is large), the bias from this ap-
proach may be negligible, even for large fractions of immortal
time f (also see Web Figure 3).

Cox model with a time-dependent treatment variable

In the presence of the baseline covariates L0, the hazard
function can be expressed as the following time-dependent
Cox model:

λTðtmjL0Þ ¼ λ0ðtmÞ expðψ1Atm þ ψ2L0Þ; ð1Þ

where ψ1 is the log HR of the time-dependent treatment status
ðAtmÞ:
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The PTDM approach

The essence of the PTDM approach is to redefine time zero
in both the ever-treated and the never-treated groups (13) by
shifting the start of follow-up to the time of treatment initia-
tion (the end of the immortal time period) TA for the ever-
treated subjects. First the immortal time (wait) periods for
all of the ever-treated subjects are listed. For each never-
treated subject, a time zero is selected at random (with replace-
ment) from this list and assigned as the new time zero for the
corresponding never-treated subjects. If a never-treated sub-
ject has an event before the end of the assigned immortal
time (new time zero), he or she is excluded from further anal-
ysis. The analysis is performed on the new time zero points—
that is, the newly defined baselines after exclusion of the ob-
served or assigned immortal time from the follow-up for the
ever-treated and never-treated groups, respectively (see Web
Figure 1). This is expected to eliminate the imbalance in the
excluded time distribution between the two treatment groups.

Let us denote the immortal time for the jth treated subject
as Tj,IT. Similarly, the matched-immortal time for the j′th un-
treated subject is denoted by Tj′,IT. The aggregated immortal
time is denoted by TIT ≡

Pn1
j¼1 Tj;IT, and we denote the ag-

gregated matched-immortal time by T 0
IT ≡

Pn0
j0¼1 T j0 ;IT: The

number of failures observed during the aggregated immortal
time TIT is zero. Let N 0

IT be the number of failures observed
during the aggregated matched-immortal time T 0

IT: For
N 0

IT � 0; the total untreated person-time Tx of the N 0
IT patients

who had failures within their assigned immortal times is ex-
cluded. Set x = Tx/T1 ≥ 0. In addition, set T 0

IT ¼ q × TIT; that
is, q is the ratio of assigned and observed immortal times. Here,
q > 1 for the setting in which the aggregated matched-immortal
time T 0

IT is larger than the aggregated observed immortal time
TIT; otherwise, 0 < q < 1. Comparing the failure rate ratio from
PTDM (RR‴) with the correct rate ratio obtained from a time-
dependent analysis (detailed derivation shown in Web Appen-
dix 1) yields

RR000

RR
¼

N1=ðT1�TITÞ
ðN0�N 0

ITÞ=ðT0�T 0
IT�TxÞ

N1=ðT1�TITÞ
N0=ðT0þTITÞ

¼ N0

N0�N 0
IT

r�q× f �x

rþ f
:

Varying r, f, x, and q yields Figure 1. This approach shows a
downward bias for increasing values of f, the fraction of the im-
mortal person-time in the ever-treated subjects. The level of
bias increases with both q and x. As with the excluded immor-
tal time approach (described in Web Appendix 2), the bias
from this approach is also small if the ever-treated cohort (or
its person-time contribution) is much smaller than the never-
treated cohort (i.e., r is large), even for large fractions of im-
mortal time f (see Figure 1).

Further theoretical assessment of this approach is provided
in Web Appendix 3.

The sequential Cox approach

The sequential Cox approach (35) mimics a randomized
clinical trial for each of the intervals m (m = 0, 1, 2, . . ., K)
during which subjects initiate treatment. Based on treatment
initiation at the mth interval, the mth minitrial is created as

follows: Only subjects who have not received any treatment
before themth interval are considered. Among these subjects,
those initiating treatment during the mth interval (tm < TA ≤
tm+1) are considered the treated group, while the remaining
subjects are considered the control group (for an illustration,
see Web Figure 4 in Web Appendix 4). This mode of data re-
structuring closely resembles the “sequence of trials” approach
(39) but differs with regard to some details; for example, in the
current approach, treatment weights are not used to avoid poten-
tial instability in the estimated weights (35, 36) and the control
subjects are artificially censored at the time of later treatment
initiation (TA > tm+1) to avoid confounding due to misclassifica-
tion of treatment status. To address such artificial censoring,
the analysis results are adjusted using inverse-probability-of-
censoring weights (36, 40).

We create the pseudodata by aggregating the data from all
minitrials (see Web Appendix 4 for implementation details).
Under the assumption that the different minitrials may have
different baseline hazard functions but all subjects in the
same minitrial will have the same baseline hazard function,
we can fit a weighted stratified (time-invariant) Cox model
to the pseudodata, stratified by the treatment initiation inter-
val and weighted by the inverse-probability-of-censoring
weights. Because the same subject may be included in more
than 1 minitrial, we use the robust (sandwich) estimator to ob-
tain the standard error (41, p. 170; 42, 43).

Design of simulation

To simulate survival times, we adapt the permutation algo-
rithm (44), which has been validated for generating survival
times conditional on time-dependent variables (45, 46) (see
Web Appendix 5).

Simulation specifications. In all of our simulations, we
generated N = 1,000 data sets, each with n = 2,000 subjects
followed for up to m = 30 subsequent visits. For a given per-
centage of subjects, treatment initiation time TA is generated
from a uniform distribution U(0, 30) (in months). In our sim-
ulations 1–3, the percentages of subjects who remain unex-
posed to treatment for the entire duration of follow-up
(infinite T A) are set to 0%, 25%, and 75%, respectively, for
the case in which there is no failure or censoring during
follow-up. When subjects fail (reach the outcome) or become
censored before they get a chance to initiate treatment, the
percentages of never-exposed subjects increase. In all of
these simulation settings, we assume an exponential distribu-
tion for generating failure times Twith the constant λ0 = 0.01
rate of monthly events throughout the follow-up period. A
uniform distribution U(1, 60) months is assumed to generate
censoring times T C. Administrative censoring is set at 30
months of follow-up for all subjects who remain at risk at
that time. For each simulated data set, we can calculate the
exact percentages of ever-treated and never-treated subjects.
For any subject, treatment status is binary for any given
month, either exposed or unexposed, where a person is con-
sidered exposed throughout the month of the treatment initi-
ation. To focus on the immortal time issue, we assume there
are no discontinuations or interruptions for persons who ini-
tiate treatment. Additionally, we consider sex as a baseline
confounder. A subject’s sex is generated based on a Bernoulli
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distribution where the probability of being male is 0.3 (as
might occur in an MS population).
After generating values for the survival time Ti, the censor-

ing time TC
i ; and the treatment and covariate matrix Xim =

(Aim, Li0) for each subject i = 1, 2, . . ., n for up to m = 30
time periods, the permutation algorithm (44) is used to gen-
erate survival data, where treatment Atm is time-dependent but
the confounder L0 is fixed at the baseline value. Arbitrarily,
the parameters for the effects of treatment and sex on the sur-
vival outcome are set such that the treatment is associated

with the outcome in a harmful direction (a log HR of ψ1 =
0.5) and males are at a lower risk than females (a log HR
of ψ2 =−0.7).
In order to consider more frequent events, we repeat the

Monte Carlo study (similar to simulation 1) with λ0 = 0.10
(on a monthly scale) (simulation 4). We further assume a
gamma distribution (scale = 1/0.01, shape = 0.4) and aWeibull
distribution (scale = 1/0.01, shape = 2) for generating failure
times T (simulations 5 and 6, respectively; all other settings
are similar to simulation 1).
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Figure 1. Rate ratios for the prescription time-distribution matching method (RR‴) of dealing with immortal time bias in drug effectiveness studies
as compared with rate ratios for a time-dependent analysis (RR) as a function of the fraction of immortal time f and for various ratios of the observed
person-times in never-treated and ever-treated subjects, r. Specific cases: A) q = 1 (where q is the ratio of assigned and observed immortal times)

and x = 0 (i.e., number of failures (reaching outcome) observed during the aggregatedmatched-immortal time,N 0
IT ¼ 0); B) q = 0.5 and x = 0; C) q = 2

and x = 0; D) q = 1 (assuming that N 0
IT is very small compared with N0) and x = 0.5. The “bias” is the deviation of RR‴/RR from the null value 1.
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Performance metrics. We assess the performance of the
various approaches by means of the following measures:

• Bias ðcψ1Þ ¼
PN

i¼1 ðcψ1i � ψ1Þ=N: the average difference be-
tween the true parameters and N = 1,000 estimated parame-
ters (log HR).

• Standard deviation ðcψ1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðcψ1i � ψ1Þ2=ðN � 1Þ
q

,

where ψ1 ¼
PN

i¼1
ψ̂1i

N
.

• Model-based (average) standard error: The average of N =
1,000 estimated standard errors of the estimated causal as-
sociation parameter.

• Coverage probabilities of model-based nominal 95% confi-
dence intervals: proportion of N = 1,000 data sets in which

the true parameter is contained in the nominal 95% confi-
dence interval.

• Mean squared error ðcψ1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðcψ1i � ψ1Þ2=N
q

.

SIMULATION RESULTS

Description of the simulated data

To describe the data sets generated from each of the simu-
lations, we generated 1 data set for each simulation with a
larger number of subjects (n = 25,000). Figure 2 shows the
cumulative percentages of the cohort having initiated treat-
ment over the 30 follow-up periods.
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Figure 2. Cumulative percentages of a simulated cohort of 25,000 multiple sclerosis patients having initiated treatment over 30 follow-up periods.
A) Simulation 1, with percentages of “failure,” “never-treated,” and “ever-treated” patients being 0.96%, 32.78%, and 67.22%, respectively; B) sim-
ulation 2, with the above percentages being 0.99%, 49.48%, and 50.52%, respectively; C) simulation 3, with the above percentages being 0.99%,
83.19%, and 16.81%, respectively. These percentages refer to percentages of subjects who fail (reach the outcome), remain unexposed to treat-
ment, and initiate treatment, respectively, over the 30-month period.
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Rare event condition

The results from the simulations of the rare event condition
(λ0 = 0.01 on a monthly time scale), simulations 1–3, are
given in Tables 1–3, respectively.
When the immortal time is misclassified as exposed time,

we see a substantial downward bias. The bias improves slightly
when excluded immortal time and PTDM approaches are
used, but these estimate are still off the target. As the ratio
for the subjects in the never-treated group versus the ever-
treated group increases, the bias monotonically goes down
(see Tables 2 and 3). The variability of the estimator is larger
for PTDM than for the time-dependent Cox results. Interest-
ingly, the standard errors of the estimates from both themisclas-
sified and excluded immortal-time approaches are smaller than
those for the time-dependent Cox results, but the mean squared
errors are generally higher. When the sequential Cox approach
is applied, in all 3 of these simulations, the biases are negligible
and the average coverage probabilities of the model-based
nominal 95% confidence intervals are close to 0.95; both
are comparable to the time-dependent Cox results. This esti-
mator is generally more variable than that from the time-
dependent Cox model fit (from simulations 1 and 2). However,
from simulation 3 (Table 3), we see that exceptions may be
possible.

When more events are available

Results from the more frequent event condition (λ0 = 0.10
on a monthly time scale) are presented in Table 4. The bias
for misclassified, excluded immortal-time, and PTDM ap-
proaches exhibiting large bias in Table 1 is considerably

Table 1. Results Derived From Analytical Approaches to Adjusting

for Immortal Time Bias in a Simulation of 1,000 Data Sets, Each

Containing 2,000 Multiple Sclerosis Patients Followed for Up to

30 Time Intervals (Rare Event Case λ0 = 0.01) (Simulation 1)

Approacha Bias (cψ1) SD (cψ1) SE (cψ1) CP MSE (cψ1)

TD Coxb −0.004 0.122 0.121 0.955 0.015

Included IT −2.307 0.109 0.108 0.000 5.332

Excluded IT −1.360 0.102 0.102 0.000 1.859

PTDM −1.411 0.144 0.143 0.000 2.011

Sequential Coxc,d,e −0.002 0.157 0.150 0.941 0.025

Abbreviations: CP, coverage probability; IT, immortal time; MSE,

mean squared error; PTDM, prescription time-distribution matching;

SD, standard deviation; SE, standard error; TD, time-dependent.
a When estimating the treatment effect, the baseline covariate L0 is

included in all of the models under consideration. The results from the

TD Cox model are considered the standard for comparison purposes.

Results are provided on the log hazard ratio scale.
b Cox proportional hazards model with time-dependent exposure.
c In the sequential Cox approach, the corresponding inverse-

probability-of-censoring weights model is fitted using Aalen’s additive

regression model (58, 59), adjusting for Atm and L0 to predict future

censoring status.
d A robust (sandwich) estimator was used to obtain the SE.
e Event times were generated from an exponential distribution with

rate 0.01.

Table 2. Results Derived From Analytical Approaches to

Adjusting for Immortal Time Bias in a Simulation of 1,000 Data Sets,

Each Containing 2,000 Multiple Sclerosis Patients Followed for Up to

30 Time Intervals (Rare Event Case λ0 = 0.01) (Simulation 2)a

Approachb Bias (cψ1) SD (cψ1) SE (cψ1) CP MSE (cψ1)

TD Coxc −0.000 0.117 0.116 0.949 0.014

Included IT −1.394 0.099 0.100 0.000 1.953

Excluded IT −0.698 0.104 0.104 0.000 0.499

PTDM −0.558 0.134 0.131 0.012 0.329

Sequential Coxd,e,f −0.001 0.127 0.126 0.950 0.016

Abbreviations: CP, coverage probability; IT, immortal time; MSE,

mean squared error; PTDM, prescription time-distribution matching;

SD, standard deviation; SE, standard error; TD, time-dependent.
a At least 25% of subjects unexposed at baseline remained

untreated during the entire follow-up period.
b When estimating the treatment effect, the baseline covariate L0 is

included in all of the models under consideration. The results from the

TD Cox model are considered the standard for comparison purposes.

Results are provided on the log hazard ratio scale.
c Cox proportional hazards model with time-dependent exposure.
d In the sequential Cox approach, the corresponding inverse-

probability-of-censoring weights model is fitted using Aalen’s additive

regression model (58, 59), adjusting for Atm and L0 to predict future

censoring status.
e A robust (sandwich) estimator was used to obtain the SE.
f Event times were generated from an exponential distribution with

rate 0.01.

Table 3. Results Derived From Analytical Approaches to Adjusting

for Immortal Time Bias in a Simulation of 1,000 Data Sets, Each

Containing 2,000 Multiple Sclerosis Patients Followed for Up to

30 Time Intervals (Rare Event Case λ0 = 0.01) (Simulation 3)a

Approachb Bias (cψ1) SD (cψ1) SE (cψ1) CP MSE (cψ1)

TD Coxc −0.001 0.146 0.145 0.956 0.021

Included IT −0.832 0.138 0.135 0.000 0.711

Excluded IT −0.136 0.146 0.142 0.850 0.040

PTDM −0.101 0.152 0.151 0.912 0.033

Sequential Coxd,e,f −0.008 0.146g 0.145 0.954 0.021

Abbreviations: CP, coverage probability; IT, immortal time; MSE,

mean squared error; PTDM, prescription time-distribution matching;

SD, standard deviation; SE, standard error; TD, time-dependent.
a At least 75% subjects unexposed at baseline remained untreated

during the entire follow-up period.
b When estimating the treatment effect, the baseline covariate L0 is

included in all of the models under consideration. The results from the

TD Cox model are considered the standard for comparison purposes.

Results are provided on the log hazard ratio scale.
c Cox proportional hazards model with time-dependent exposure.
d In the sequential Cox approach, the corresponding inverse-

probability-of-censoring weights model is fitted using Aalen’s addi-

tive regression model (58, 59), adjusting for Atm and L0 to predict

future censoring status.
e A robust (sandwich) estimator was used to obtain the SE.
f Event times were generated from an exponential distribution with

rate 0.01.
g The SD from the sequential Cox model (0.1456) was slightly

smaller than the SD from the TD Cox model fit (0.1460).
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reduced but is still large, whereas the time-dependent Cox
and sequential Cox approaches again exhibit negligible bias.
For the PTDM approach, less bias is expected when the event
rate is higher, as is discussed via an example of the analytical
results in Web Appendix 3. In addition, the standard errors
are much larger when failure rates are low.

When event times are generated from gamma andWeibull

distributions

When event times are generated from a gamma distribution
and a Weibull distribution, the results (Web Tables 1 and 2)
closely resemble those obtained when event times are gener-
ated from an exponential distribution (Table 1).

Application to MS

We applied the methods described in this paper to data on
the British Columbia MS cohort used earlier in the BeAMS
Study (1995–2008) (38, 47–51). Web Appendix 6 shows the
baseline characteristics of this MS cohort (see Web Table 3)
and gives the study eligibility and exclusion criteria. In this
retrospective observational study, the outcome measure was
time from β-interferon eligibility to a “confirmed and sus-
tained” Expanded Disability Status Scale score of 6, consid-
ered irreversible disability when all subsequent such scores
were at least 6, with 1 or more measurements being taken
at least 150 days later (52, 53). The goal was to assess the as-
sociation of β-interferon with irreversible disease progression
in MS patients.

Results are reported in Table 5. None of the approaches
showed a significant hazard ratio. The hazard ratio estimated
from the included immortal time approach was the lowest,
and this was expected from the simulation. The hazard ratio
estimated from the sequential Cox approach was slightly
lower than that estimated from the time-dependent Cox analy-
sis, while that estimated from the PTDM was even lower. The
distributions of excluded times from both groups when using
the PTDM method looked reasonably similar (Figure 3). Be-
cause the PTDM approach produces different estimates from
the same data due to the random sampling of the control sub-
jects, we estimated the hazard ratio from the British Columbia
MS data 1,000 times (average hazard ratio = 1.26; listed in
Table 5). The distribution of the estimated hazard ratios was
moderately symmetrical (see Web Figure 5). Density plots of
the estimated inverse-probability-of-censoring weights are
shown in Web Figure 6.

To better understand the possible level of bias from each
approach in this context, we conducted another Monte Carlo
study, choosing data simulation settings similar to those of
the MS data set. Simulation specifications are shown in Web
Appendix 7 (simulated cohort characteristics are shown in
Web Table 4 and Web Figure 7). The results are reported in
Table 6. Here, the level of bias from each approach is much

Table 4. Results Derived From Analytical Approaches to Adjusting

for Immortal Time Bias in a Simulation of 1,000 Data Sets, Each

Containing 2,000 Multiple Sclerosis Patients Followed for Up to

30 Time Intervals (More Frequent Event λ0 = 0.10) (Simulation 4)a,b

Approachc Bias (cψ1) SD (cψ1) SE (cψ1) CP MSE (cψ1)

TD Coxd −0.004 0.061 0.060 0.946 0.004

Included IT −1.475 0.062 0.057 0.000 2.179

Excluded IT −0.412 0.066 0.057 0.000 0.174

PTDM −0.522 0.071 0.065 0.000 0.278

Sequential Coxe,f −0.037 0.077 0.072 0.905 0.007

Abbreviations: CP, coverage probability; IT, immortal time; MSE,

mean squared error; PTDM, prescription time-distribution matching;

SD, standard deviation; SE, standard error; TD, time-dependent.
a λ0 = 0.10 on a monthly time scale implies that almost all subjects

should reach the outcome within the first 10 months.
b Event times were generated from an exponential distribution with

rate 0.1.
c When estimating the treatment effect, the baseline covariate L0 is

included in all of the models under consideration. The results from the

TD Cox model are considered the standard for comparison purposes.

Results are provided on the log hazard ratio scale.
d Cox proportional hazards model with time-dependent exposure.
e In the sequential Cox approach, the corresponding inverse-

probability-of-censoring weights model is fitted using Aalen’s additive

regression model (58, 59), adjusting for Atm and L0 to predict future

censoring status.
f A robust (sandwich) estimator was used to obtain the SE.

Table 5. Estimated Parameters (Using the Hazard Scale)

for Multiple Sclerosis Patients From British Columbia, Canada,

1995–2008

Approacha dHR SE (dHR) 95% CI

TD Coxb 1.29 0.23 0.91, 1.82

Included IT 0.98 0.19 0.67, 1.42

Excluded IT 1.35 0.26 0.93, 1.96

PTDM 1.12 0.21 0.77, 1.63

PTDM (average)c 1.26 0.25 0.86, 1.85

Sequential Coxd 1.22 0.33 0.72, 2.08

Abbreviations: CI, confidence interval; HR, hazard ratio; IPCW,

inverse-probability-of-censoring weights; IT, immortal time; PTDM,

prescription time-distribution matching; SD, standard deviation; SE,

standard error; TD, time-dependent.
a To demonstrate the impact of the various immortal or immune time

(pertains to nonfatal outcomes) adjustment methods, we assume here

that once the subjects initiate β-interferon use, they continue taking the

drugwithout any discontinuation until they develop the outcome (time to

irreversible progression of disability) or are censored. All of the models

under consideration adjust for the baseline confounders L0 (age, sex,
disease duration, and Expanded Disability Status Scale score) when

estimating the treatment effect. The Cox model is used in all of these

approaches.
b Cox proportional hazards model with time-dependent exposure.
c The HR was estimated from British Columbia multiple sclerosis

data (38, 47) 1,000 times and averaged. The mean HR was 1.26

(ranging from 1.07 to 1.52; SD, 0.08), the average SE was 0.25 (SD,

0.02), and the average 95% CI was 0.86, 1.85.
d To create the IPCW for the sequential Cox approach, Aalen’s

additive regression model (58, 59) is used. The IPCW denominator

model adjusts for Atm and L0. The average weight is 1.00 (SD, 0.13),

ranging from 0.66 to 3.45. Estimated IPCW distributions are unimodal

and symmetrical.
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less than that reported for the previous simulations (Table 6 vs.
Tables 1 and 2) but similar to that in simulation 3 (Table 3).

DISCUSSION

In observational studies of drug effectiveness, subjects
may not be exposed to the treatment at the beginning of
follow-up. Statistical procedures, such as the time-dependent
Cox model, are known to deal with time-dependent treat-
ment. However, in the medical literature, it is common to
see the Cox model applied on the basis of baseline treatment
information, likely for the convenience of model-fitting and
group-based interpretation (54). Therefore, there is a need for
methods that are capable of handling the time-dependent na-
ture of longitudinal data and will also help us to better under-
stand the treatment-outcome mechanism. To this end, the

PTDM approach has been proposed for the situation where
treatment initiation occurs later than cohort entry (13). The
sequential Cox approach has been proposed for more com-
plex longitudinal settings (35), but we considered a simpli-
fied version of this approach to deal with the immortal time
bias.
In the PTDM approach, treatment exposure is converted

into a time-independent variable so that a simple Cox
model for treatment-group comparison can be applied. New
time zeros are defined after excluding the observed and as-
signed immortal times in the ever- and never-treated groups.
The excluded times (wait periods) for the ever-treated and
never-treated groups follow the same distribution. However,
the baseline is not the same for all subjects. The question of
whether this approach (assigning the baseline borrowed from
the ever-treated cohort) adequately addresses the immortal
time bias has not previously been investigated in a systematic
fashion, to our knowledge. From our bias-quantifying equa-
tions (Web Appendices 1 and 3) and the results of our simu-
lations, we can see that the bias is still substantial in the
PTDM analysis and the direction of the bias is negative, high-
lighting the value of setting a well-defined time zero or base-
line. The results of simulations 1–3 (also inWeb Appendix 1)
identify an increase in the ratio of subjects in the never-treated
group to subjects in the ever-treated group as an important de-
sign parameter for reducing bias associated with the PTDM
method (biases were −1.411, −0.558, and −0.101 for the ra-
tios 0.49, 0.98, and 4.95, respectively). From simulation 4,
we learned that less bias is expected for the PTDM approach
when the event rate is higher. We also considered 2 other
popular event-time-generating distributions, namely the
gamma and Weibull distributions (simulations 5 and 6, re-
spectively), and the results were consistent with those from
simulation 1.
In contrast, the sequential Cox approach allows a consistent

definition of baseline and utilizes all subjects. The baseline is
set on the basis of treatment initiation, and the subjects are
stratified accordingly. This approach recreates the covariate
process at each treatment start using the minitrial approach
(36) and works very well in our simulation studies in terms
of bias. In practice, as the time-dependent Coxmodel approach

Table 6. Comparison of Analytical Approaches to Adjusting for Immortal Time Bias in a Simulation Inspired by

Multiple Sclerosis Data From 1,000 Data Sets, Each Containing 1,700 Subjects Followed for Up to 150 Monthsa

Approachb Bias (cψ1) SD (cψ1) SE (cψ1) CP MSE (cψ1) 95% CI for Mean Biasc

TD Coxd 0.000 0.136 0.135 0.949 0.018 −0.008, 0.008

Included IT −0.833 0.122 0.122 0.000 0.709 −0.841, −0.825e

Excluded IT −0.027 0.134 0.129 0.942 0.019 −0.035, −0.019e

PTDM −0.105 0.139 0.139 0.890 0.030 −0.114, −0.096e

Sequential Cox −0.001 0.231 0.207 0.928 0.053 −0.015, 0.013

Abbreviations: CI, confidence interval; CP, coverage probability; IT, immortal time; MSE, mean squared error;

PTDM, prescription time-distribution matching; SD, standard deviation; SE, standard error; TD, time-dependent.
a The simulation included 4 baseline covariates and a time-dependent treatment exposure.
b Results are provided on the log hazard ratio scale.
c The 95% CI for the mean bias was calculated as bias ± 1.96 × SD/

ffiffiffiffiffiffiffiffi
ðNÞ

p
across the 1,000 simulations.

d Cox proportional hazards model with time-dependent exposure.
e Indicative of a finite-sample bias across 1,000 simulations.

0 2 4 6 8 10
0.0000

0.0007

0.0014

0.0021

0.0028

0.0035

Time, years

D
en

si
ty

Treatment Start for Treated
Matched Times for Untreated

Figure 3. Matched wait periods (or matched immortal times), in
years, from the prescription time-distribution matching approach in a
simulated cohort of 25,000 multiple sclerosis patients initiating β-
interferon treatment, British Columbia, Canada, 1995–2008.
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can easily deal with the immortal time bias and is simpler to
implement, one may not be inclined to use the sequential Cox
approach, because additional steps are involved in the data-
restructuring for the latter approach (i.e., to create minitrials
and then pseudodata). The data associated with a givenminitrial
in a sequential Cox approach, however, can be extracted and
separated quite easily from the pseudodata, and it is straightfor-
ward to compare the treatment associations (of early versus late
treatment initiation) with the outcome. It is also possible to es-
timate the treatment association for patients with a specific level
of a covariate at treatment initiation (35). Such detailed scrutiny
using this minitrial approach could yield insights about the data
which may be hard to gain using the time-dependent Cox
approach.

We applied the methods under consideration to estimate
the association of β-interferon with disease progression in
the British Columbia MS cohort. In comparison with results
from the time-dependent Cox model (hazard ratio (HR) =
1.29, 95% confidence interval (CI): 0.91, 1.81), the sequen-
tial Cox approach provided a slightly lower association
estimate with a wider confidence interval (HR = 1.22, 95%
CI: 0.72, 2.08). Repeating the PTDM analysis 1,000 times,
the average results (HR = 1.26, average 95% CI: 0.86, 1.85)
were quite similar to those from the time-dependent Cox ap-
proach, although the average confidence interval for the esti-
mated treatment association was slightly wider. We designed
another Monte Carlo study using simulation settings reflect-
ing our MS data set to explore further the level of bias from
each approach. The smaller amount of bias in this simulation
for each approach may have been a consequence of the fact
that the ever-treated group was much smaller than the never-
treated group in this simulation (19% vs. 81%; ratio: 4.26).
This phenomenon also explains why the PTDM approach
provided estimates close to those from the time-dependent
Cox model fit (29% user vs. 71% nonuser) (13). Even in
this simulation setting, the time-dependent Cox model and
sequential Cox approach were still associated with less bias
than the PTDM approach.

Similar to other simulation studies, we investigated only a
few scenarios. However, the assumptions underlying the data
simulation were consistent with patterns typical of epidemio-
logic observational survival studies, where treatment initia-
tion may happen later for some subjects than others (7).
Furthermore, our assumption of no discontinuations or inter-
ruptions in the treatment was restrictive and may not be suit-
able for more complex disease scenarios in which an
investigator might wish to assess different treatment strate-
gies (i.e., switching between therapies) over the course of
time. Substantial immortal time bias was introduced by
group-based Cox model analyses in the scenarios investi-
gated (analytical expressions for PTDM approach in Web
Appendix 3 also support this finding). However, even in
these scenarios, the sequential Cox method appeared to esti-
mate the target parameter adequately. Variance estimation is
still a challenge with the sequential Cox model and similar
methods (55, 56), and the resampling methods suggested
for estimating the variance are computationally demanding
(35, 57). Future research could focus on assessing the ability
of the sequential Cox approach to adjust for time-dependent
confounders (37).
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